
1

Chapter 4

Authentication
Applications

2

Outline

• Security Concerns

• Kerberos

• X.509 Authentication Service

3

Security Concerns
• key concerns are confidentiality and timeliness

• to provide confidentiality must encrypt identification
and session key info

• which requires the use of previously shared private or
public keys

• need timeliness to prevent replay attacks

• provided by using sequence numbers or timestamps
or challenge/response
– A CAPTCHA (Completely Automated Public Turing

Test to tell Computers and Humans Apart)

4

KERBEROS

In Greek mythology, a many headed dog,
the guardian of the entrance of Hades

5

KERBEROS
• An authentication service developed as part

of project Athena in MIT

• Kerberos assumes :

– An open distributed environment for users at

workstations to access services on servers

distributed through the network.

– No trust on the identification of users by

workstations (WS)

• Kerberos wants servers to be able to :

– restrict access to authorized users

– authenticate requests for service

KERBEROS

• Users wish to access services on servers.

• Three threats exist:

– An opponent pretends to be another user
operating on the workstation.

– An opponent alters the network address of

a workstation.

– An opponent eavesdrops on exchanges

and uses a replay attack.

6

7

KERBEROS
• Provides a centralized authentication

server to authenticate users to servers

and servers to users.

• Relies on conventional encryption,

making no use of public-key encryption

• Two versions: version 4 and 5

• Version 4 makes use of DES

• Version 5
– Encryption: AES128-CTS-HMAC-SHA1-96, DES-CBC-

MD5, DES3-CBC-SHA1-KD

– Checksums: DES-MD5, HMAC-SHA1-DES3-KD, HMAC-
SHA1-96-AES128

88

Motivation of Kerberos

• Today, more common is a distributed architecture

- consisting of dedicated user WSs (clients) and
distributed or centralized servers.

• Three approaches envisioned for security
1.Each WS assures the identity of its user and each

server enforces a security policy based on user ID

2.Client systems authenticate themselves to servers, but

servers trust Client systems concerning the identity of

its user

3.The Client proves user’s identity for each service

invoked and the servers prove its identity to the clients

• Kerberos supports this third approach.

99

Motivation of Kerberos

• The requirements of Kerberos :
- Secure : A network eavesdropper can’t obtain the

necessary info. to impersonate a user

- Reliable : a distributed server architecture should be

employed with one system to back up

another

- Transparent : users don’t know the authentication

process beyond entering a password.

- Scalable : The system should support large number of

clients and severs
(i.e. a modular, distributed architecture)

• The overall scheme of Kerberos is a trusted third-

party authentication service

1010

Kerberos Version 4

• Terms:
– C = Client

– AS = authentication server

– V = server

– IDc = identifier of user on C

– IDv = identifier of V

– Pc = password of user on C

– ADc = network address of C

– Kv = secret encryption key shared by AS an V

– TS = timestamp

– || = concatenation

111111

A Simple Authentication Dialogue

(1) C AS: IDc || Pc || IDv

(2) AS C: Ticket

(3) C V : IDc || Ticket

Ticket = EKv[IDc || ADc || IDv]

- The user logs on to a WS and requests access to server V

- The client module C requests user’s password

- Then C sends message(1) to AS

- AS send a ticket to convince V of the user’s authenticity

12

A Simple Authentication
Dialogue

Ticket=Ekv[IDc,ADc,IDv]

Pc=password of client

1313

A Simple Authentication Dialogue

• Frequent requests to enter user’s password
– Suppose each ticket can be used only once

-> A user enters a password to get a ticket each time

the user wants access to V

- Suppose the tickets are reusable to improve the

matters

-> A user needs a new ticket for every different service

and hence be required to enter a password

• A plaintext transmission of password in

message(1)
– An opponent could capture the password and use any

service accessible to the victim

1414

A More Secure Dialogue

• This introduces a scheme for avoiding plaintext
passwords and a new server, ticket-granting
server (TGS)

• TGS issues tickets for services to users who
have been authenticated to AS
– Thus, the user first requests a ticket-granting ticket (TGT)

to AS

– TGT is saved in the client module of WS and used to
authenticate the user itself to TGS for each access to a
new service

– The service-granting ticket (SGT) issued by TGS is saved
and used to authenticate its user to a server for a
particular service

1515

A More Secure Dialogue

Once per user logon session:

(1) C AS: IDC ll IDtgs

(2) AS C : E(KC, Tickettgs)

Once per a type of service:

(3) C TGS: IDC ll IDV ll Tickettgs

(4) TGS C: Ticketv

Once per a service session:

(5) C V: IDC ll Ticketv

Tickettgs = E(Ktgs, [Idc ll Adc ll Idtgs ll TS1 ll Lifetime1])
Ticketv = E(Kv, [Idc ll Adc ll Idv ll TS2 ll Lifetime2])

1616

A More Secure Dialogue

• The client requests a TGT by sending msg(1)
to AS

• The AS responds with a ticket encrypted with
a key derived from user’s password

• The client prompts the user to enter a
password when receiving the response from
the AS and generates a key

• If the correct password is supplied, the ticket
is successfully recovered

Once per user logon session:

(1) C AS: IDC ll IDtgs
(2) AS C : E(KC, Tickettgs)

Tickettgs = E (Ktgs, [IDcllADcllIDtgsllTS1llLifetime1])

1717

A More Secure Dialogue

• The client requests a service-granting ticket (SGT)

for the user with a message(3) including the TGT

• The TGS issues a SGT when the user has been

authenticated by the content of the TGT

• The SGT has the same structure as the TGT

because both authenticate clients

Once per type of service:
(3) C TGS: IDC ll IDV ll Tickettgs
(4) TGS C: Ticketv

Ticketv = E (Kv, [IDc ll ADc ll IDv ll TS2 ll Lifetime2])

1818

A More Secure Dialogue

• The client requests access to a server for
the user with message(5)

• The server authenticates by using the
contents of the SGT

• The scenario satisfies the two requirements:
- Only one password query

- No transmission of the user password in plaintext

Once per type of service:
(5) C V: IDC ll Ticketv

Ticketv = E (Kv, [Idc ll Adc ll Idv ll TS2 ll Lifetime2])

19

Authentication Dialogue -
Summary

C

AS

TGS

IDC, IDtgs

EKC(Tickettgs)

IDC, IDV, Tickettgs

User

TicketV

VIDc, TicketV

Once per user logon

session

Once per type of

service

Once per service session

Ticket Granting TicketTGS=EKtgs[IDC, ADC, IDtgs, Lifetime1]

Service Granting TicketV=EKV[IDC, ADC, IDV, Lifetime2]

TGS : Ticket Granting Server

2020

A More Secure Dialogue

• Two additional problems:

1. The lifetime associated with the TGT

- Too short frequent prompts for entering the password

- Too long replay attack after capturing the ticket

(similar with the SGT)

- TGS or AS must prove that the person using the ticket is the

same person to whom that ticket was issued.

2. The requirement for servers to authenticate

themselves to users.

- The impersonated server could deny the true service to the

user

2121

Version 4 Authentication Dialogue
(1) C AS IDc || IDtgs || TS1

(2) AS C E(Kc,[Kc,tgs ll IDtgs ll TS2 ll Lifetime2 ll Tickettgs])

Tickettgs = E (Ktgs, [Kc,tgs ll IDc ll ADcll IDtgs ll TS2||Lifetime2])

Summary of Kerberos Version 4 Message Exchanges

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C TGS IDv || Tickettgs || Authenticatorc

(4) TGS C E(Kc,tgs [Kc,v ll IDv ll TS4 ll Ticketv])

Tickettgs = E(Ktgs,[Kc,tgs ll IDc ll ADc ll IDtgs ll TS2 ll Lifetime2])
Ticketv = E(Kv,[Kc,v ll IDc ll ADc ll IDv ll TS4 ll Lifetime4])
Authenticatorc = E(Kc,tgs [IDc ll ADc ll TS3])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C V Ticketv || Authenticatorc

(6) V C E(Kc,v, [TS5 + 1]) (for mutual authentication)
Ticketv = E (Kv, [Kc,v ll IDc ll ADc ll IDv ll TS4 ll Lifetime4])
Authenticatorc = E (Kc,v, [IDc ll ADc ll TS5])

(c) Client/Server Authentication Exchange to obtain service

2222

Version 4 Authentication Dialogue

The client requests a TGT to AS with message(1)

To handle the problem of captured TGT and
the genuiness of ticket presenter,

– the AS provides both the TGS and the client with
a secret information, called a session key,
in a secure manner through message(2)

– then the key is used to prove the identity of
the client to TGS

(1) C AS IDc || IDtgs || TS1

(2) AS C E(Kc,[Kc,tgs ll IDtgs ll TS2 ll Lifetime2 ll Tickettgs])

Tickettgs = E(Ktgs, [Kc,tgs ll IDc ll ADcll IDtgs ll TS2 || Lifetime2])

(a) Authentication Service Exchange to obtain ticket-granting ticket

2323

Version 4 Authentication Dialogue

• C transmits an authenticator (A) used only once with
very short lifetime in message(3)
– Replay attack is encountered.

• The TGS decrypts the A and the ticket with keys,
- The contents from the both are checked if those match

- The ticket is a way to distribute keys securely

- The A proves the client’s identity.

• Reply from TGS includes a session key shared b/w C and V.
– It says that the key can be used by only C and V for

authentication.

(3) C TGS IDv || Tickettgs || Authenticatorc

(4) TGS C E(Kc,tgs [Kc,v ll IDv ll TS4 ll Ticketv])

Tickettgs = E(Ktgs,[Kc,tgs ll IDc ll ADc ll IDtgs ll TS2 ll Lifetime2])

Ticketv = E(Kv,[Kc,v ll IDc ll ADc ll IDv ll TS4 ll Lifetime4])
Authenticatorc = E(Kc,tgs [IDc ll ADc ll TS3])

(b) Ticket-Granting Service Exchange to obtain SGT

2424

Version 4 Authentication Dialogue

The message(5) is similar to message(3)

– V examines the contents of A and the ticket if the ticket presenter is

genuine

The mutual authentication is done with message(6)
– The value of timestamp from the A is incremented by 1 and

encrypted by the session key.

– The contents of the message assures C that this is not a replay

– The session key is used to encrypt future messages b/w the two or

to exchange a new random session key for that purpose

(5) C V Ticketv || Authenticatorc

(6) V C E(Kc,v, [TS5 + 1]) (for mutual authentication)

Ticketv = E(Kv,[Kc,v ll IDc ll ADc ll IDv ll TS4 ll Lifetime4])

Authenticatorc = E(Kc,v, [IDc ll ADc ll TS5])

(c) Client/Server Authentication Exchange to obtain service

2525

Version 4 Authentication Dialogue

2626

Kerberos Realm

• A Kerberos realms is a set of managed nodes that

share the same Kerberos DB.

• A Kerberos realm consists of :
– A Kerberos server, with all user IDs and their passwords

in its DB

– A number of clients, registered with the Kerberos server

– A number of application servers, sharing a key and

registered with the Kerberos server

• Networks of clients and servers under different

administrative organizations constitute typically

different realms.

2727

Kerberos Realms with Multiple Kerberi

• For two realms to support interrealm auth,
– The Kerberos server in one realm shares a secret key

with the sever in the other realm. The two Kerberos

servers are registered with each other

– The participating servers in the second realm must trust

the Kerberos server in the first realm

• One problem with above approach :
– It does not scale well to many realms

– It requires N(N-1)/2 secure key exchanges for

interoperation of all realms

2828

Request for Service in Another Realm

2929

Interrealm Authentication Message
Exchanges

(1) C AS : IDc || IDtgs || TS1

(2) AS C : E(Kc,[Kc,tgs ll IDtgs ll TS2 ll Lifetime2 ll Tickettgs])

(3) C TGS : IDtgsrem || Tickettgs || Authenticatorc

(4) TGS C : E(Kc,tgs [Kc,tgsrem ll IDtgsrem ll TS4 ll Tickettgsrem])

(5) C TGSrem : IDvrem || Tickettgsrem || Authenticatorc

(6) TGSrem C : E(Kc,tgsrem, [Kc,vrem ll IDvrem ll TS6 ll Ticketvrem])

(7) C Vrem : Ticketvrem || Authenticatorc

3030

Kerberos Version 5

• Version 5 is intended to address the limitations of

Version 4 in two areas :
– Environment shortcomings, due to development for

use within the Project Athena environment, not for

general purpose

– Technical deficiencies in the version 4 protocol itself

• First, examine the differences b/w version 4 and 5

• Then, look at the version 5 protocol

3131

Environment Shortcomings of Version 4

1. Encryption system dependence : the use of DES

only on Version 4
- Any encryption technique may be used

- Encryption type identifier is tagged with ciphertext

- Encryption Keys are tagged with type and a length to

be used in different algorithms

2. Internet protocol dependence : the use of IP address

only

- Network address is tagged with type and length

(e.g. ISO)

3232

Environment Shortcomings of Version 4

3. Message byte ordering : least or most significant

byte ordering chosen by the sender of a message

- use of ASN(Abstract Syntax Notation).1 and BER (basic

ending rules) for unambiguous ordering

4. Ticket lifetime : an 8-bit quantity in units of 5 min
(max = 28 × 5 = 1280 min)

- use of explicit start and end time for arbitrary lifetime

3333

Environment Shortcomings of Version 4

5. Authentication forwarding : no forwarding
- Version 5 allows credentials issued to one client to be

forward to some other host and used by some other
client

- For example, a client issues a request to a print
server that then accesses the client’s file from file
server, using the client’s credentials for access

6. Interrealm authentication : N2 Kerberos-to-

Kerberos relationships

- Version 5 supports a method with fewer relationships

3434

Technical Deficiencies of Version 4

1. Double encryption : the tickets encrypted
twice in messages 2 & 4

- No double encryption on tickets in Version 5

2. PCBC encryption : use of nonstandard PCBC
mode of DES

- its vulnerability has been demonstrated

- PCBC was intended to provide and integrity check as

part of encryption operation

- Version 5 provides explicit integrity mechanisms,

allowing the standard CBC mode for encryption

35

PCBC Mode

Used in

Kerberos v4,

cf : Fig.2.9

3636

Technical Deficiencies of Version 4

3. Session keys : possibility of replay attack by
repeated uses of the same ticket

- A subsession key for C and V is allowed to be used
only for that connection

4. Password attack : both versions are weak to this attack

- The key is generated based on user’s password

- The password is limited to characters in a 7-bit ASCII

- An opponent attempts to decrypt a message by trying
various passwords

- Version 5 provides a mechanism “preauthentication “ to
make the attack more difficult (but not preventing it)

3737

Version 5 Authentication Dialogue
(1) C AS Options ll IDc || Realmc || IDtgs ll Times ll Nonce1

(2) AS C Realmc ll IDc ll Tickettgs || E(Kc, [Kc,tgs ll Times ll Nonce1 ll

Realmtgs ll IDtgs])
Tickettgs = E(Ktgs,[Flags ll Kc,tgs || Realmc ll IDc ll ADcll Times])

Summary of Kerberos Version 5 Message Exchanges

(a) Authentication Service Exchange to obtain ticket-granting ticket

(3) C TGS Options ll IDv ll times ll Nonce2 ll Tickettgs ll Authenticatorc

(4) TGS C Realmc ll IDc ll Ticketv ll E(Kc,tgs, [Kc,v ll Times ll Nonce2 ll
Realmv ll IDv])

Tickettgs = E(Ktgs,[Flags ll Kc,tgs ll Realmc ll IDc ll ADc ll Times])
Ticketv = E(Kv,[Flags ll Kc,v ll Realmc ll IDc ll ADc ll Times])
Authenticatorc = E(Kc,tgs [IDc ll Realmc ll TS1])

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(5) C V Options ll Ticketv ll Authenticatorc
(6) V C EKc,v, [TS2 ll Subkey ll Seq#]

Ticketv = E(Kv,[Flags ll Kc,v ll Realmc ll IDc ll ADc ll Times])
Authenticatorc = E(Kc,v, [IDc ll Realmc ll TS2 ll Subkey ll Seq#])

(c) Client/Server Authentication Exchange to obtain service

3838

Version 5 Authentication Dialogue

• Message (1) is a client request for a TGT
– Options : used to request for certain flags to be set

in returned ticket

– Nonce : is a random value to be repeated in msg(2)
to counter replay attack

• Message (2) returns a TGT

– Flags : reflect the status of this ticket and requested

options with new functionality added to Version 5

(a) Authentication Service Exchange to obtain ticket-granting ticket

(1) C AS Options ll IDc || Realmc || IDtgs ll Times ll Nonce1

(2) AS C Realmc ll IDc ll Tickettgs E(Kc,[Kc,tgs ll Times ll Nonce1 ll
Realmtgs ll IDtgs])

Tickettgs = E(Ktgs,[Flags ll Kc,tgs || Realmc ll IDc ll ADcll Times])

3939

Version 5 Authentication Dialogue

• Message (3) is similar to both versions
– Version 5 includes requested time, options for ticket and a

nonce

• Message (4) has the same structure as message (2)

(b) Ticket-Granting Service Exchange to obtain service-granting ticket

(3) C TGS Options ll IDv ll times ll Nonce2 ll Tickettgs ll Authenticatorc

(4) TGS C Realmc ll IDc ll Ticketv ll E(Kc,tgs,[Kc,v ll Times ll Nonce2 ll
Realmv ll IDv])

Tickettgs = E(Ktgs,[Flagsll Kc,tgs ll Realmc ll IDc ll ADc ll Times])
Ticketv = E(Kv,[Flags ll Kc,v ll Realmc ll IDc ll ADc ll Times])
Authenticatorc = E(Kc,tgs [IDc ll Realmc ll TS1])

4040

Version 5 Authentication Dialogue

• Message(5) may include a request as an option for

mutual authentication
– Subkey : if omitted, the session key is used

– Sequence number : may be included in message to detect
replay

• Message (6) is sent by server when mutual

authentication is required

(c) Client/Server Authentication Exchange to obtain service

(5) C V Options ll Ticketv ll Authenticatorc

(6) V C EKc,v, [TS2 ll Subkey ll Seq#]

Ticketv = E(Kv,[Flags ll Kc,v ll Realmc ll IDc ll ADc ll Times])
Authenticatorc = E(Kc,v, [IDc ll Realmc ll TS2 ll Subkey ll Seq#])

4141

Password-to-key Transformation

4242

X.509 Authentication Service

• ITU-T Rec. X.509 is part of X.500 series that

define a directory service

• The directory :

– is, in effect, a server or distributed set of servers to

maintain a DB of information about users.

– may serve as a repository of public-key certificates

• X.509 defines a framework for authentication
services

- using the certificate format and authentication

protocols defined in X.509

4343

X.509 Authentication Service

• X.509 authentication protocols :

- use the directory service provided by X.500

- use certificates, PKC, and digital signature

- dictate no specific encryption algorithm, but

recommend RSA

- use a hash function for the digital signature scheme,

but dictate no specific hash algorithm

4444

X.509 Certificates

• The heart of the X.509 scheme is the public-key

certificate :

– created by some trusted CA and

– placed in the directory by the CA or by the user

• The directory server merely provides an easily

accessible location for users to obtain

certificates.

• The user certificate can be verified by using the

KU of CA known to the user.

4545

X.509 Certificate Format

4646

Typical Digital Signature Approach

4747

Obtaining a User’s certificate

• Characteristics of certificates generated by

CA:

– Any user with CA’s KU can verify the user

public key that was certified by CA’s KR.

– No part other than the CA can modify the

certificate without this being detected.

• So, certificates can be placed in a directory

without special protection for the directory

4848

Obtaining a User’s certificate
• If all users share a common CA,
then they are assumed to know CA’s KU.

• For a large community of users, it is not
practical for all users to share a CA.

– CA’s KU should be provided to all users in
absolutely secure way

– A number of CAs may be required so that each CA
provides its public key to some fraction of users.

– CAs need to exchange their own KUs in a secure

way so that a user can verify certificates of users
in the other community

• Standard notation to define a certificate
- CA<<A>> = CA {V, SN, AI, CA, TA, A, Ap }

Y<<X>> = Certificate of user X issued by CA Y

Y{I} = the signing of I by Y ; I + an encrypted hash code

49

Obtaining a User’s certificate

• When users A & B belong to different CAs

X1 & X2, A can verify B’s KU if the two CAs
have securely exchanged their own KUs :
– A obtains the certificate of X2 signed by X1

from the directory

– A then goes back to the directory and obtains the
certificate of B signed by X2 because A has a trusted
copy of X2’s KU

– A has used a chain of certificates to obtain B’s KU.
In the same way, B can obtain A’s KU.

X1<<X2>>X2<>, X2<<X1>>X1<<A>>

• This scheme can be applied to an arbitrarily
long path of CAs to produce a chain

50

Obtaining a User’s certificate
• All these certificates of CAs by CAs need to

appear in the directory

– Each pair of CAs in the chain must have created

certificates for each other

– Then the user knows how they find the path to another

user’s KU.

– CAs need to be arranged in a hierarchy for simple

navigation of certificates

• The directory entry for each CA includes two

types of certificates :

– Forward certificates : Certificates of X generated by

other CAs

– Reverse certificates : Certificates generated by X that

are the certificates of other CAs

51

Obtaining a User’s certificate
(CA hierarchy)

• The path for user A to obtain the certificate of user B,
X<<W>>W<<V>>V<<Y>>Y<<Z>>Z<>

52

Revocation of Certificates

• Reasons for revocation before it expires
– The user’s KR is assumed to be compromised

– The user is no longer certified by this CA

– The CA’s certificate is assumed to be compromised

• Each CA must maintain a list of revoked

certificates issued to users or other CAs
– Each certificate revocation list (CRL) posted to the

directory is signed by the issuer.

• Users must check certificates with CA’s CRL

53

Authentication Procedures

• X.509 includes three alternative authentication

procedures
– intended for use across a variety of applications

– to use public-key signature

– assumed for the two parties to know each other’s KU

• The three procedures :
– One-way authentication

– Two-way authentication

– Three-way authentication

54

One-Way Authentication

• A single transfer of information from A to B

• Verification of the followings:
1. A’s identity and the message generated by A

2. the message intended for B

3. the integrity and originality of the message

• At minimum : TS tA, nonce rA, B’s identity, A’s

signature

A B

1. A{tA,rA,IDB,sgnData,E[PUb,Kab]}

55

Two-Way Authentication

• Verification of the followings:
4. B’s identity and the message generated by B

5. the message intended for A

6. the integrity and originality of the reply

• Permission of verification for both parties

• Reply includes A’s nonce, TS and nonce from B

A B

1. A{tA,rA,IDB,sgnData,E[PUb,Kab]}

2. B{tB,rB,IDA,rA,sgnData,E[PUa,Kba]}

56

Three-Way Authentication

• The signed copy of the nonce rB in the final MSG
– TS need not to be checked

– Replay attack can be detected by nonces echoed

to each other

A B

1. A{tA,rA,IDB,sgnData,E[PUb,Kab]}

2. B{tB,rB,IDA,rA,sgnData,E[PUa,Kba]}

3. A{rB}

57

X.509 Version 3

• Has been recognized that additional information
is needed in a certificate
– e-mail/URL, policy details, usage constraints

• Include a number of optional extensions added

to version 2 format
– rather than continue to add fields to a fixed format

• Each extension consists of extension identifier,

criticality indicator, extension value

58

Certificate Extensions

• Key and policy information
– Convey additional info. about subject & issuer keys,

plus indicators of certificate policy

– A certificate policy is a named set of rules for the

applicability of a certificate to a particular community

and/or class of application

• Certificate subject and issuer attributes
– Support alternative names, in alternative format, for a

certificate subject or certificate issuer

• Certification path constraints
– Allow constraint specifications to be included in

certificates issued for CAs by other CAs

59

Public-Key Infrastructure (PKI)

• The set of hardware, software, people, policies,
and procedures needed to create, store,
distribute, and revoke digital certificates

• The principal objective is to enable secure,
convenient, and efficient acquisition of public
keys.

• The PKI X.509 (PKIX) model is a formal model
suitable for deploying a X.509 certificate-based
architecture on the Internet

60

PKIX of IETF
C
e
rt

if
ic

a
te

/C
R
L

R
e
p
o
si
to

ry
PKI
users

End entity

Certificate
authority

CRL issuer

Certificate
authority

PKI
Management

entities

Certificate/CRL retrieval

Registration
authority

Certificate/CRL
publication

Certificate
publication

CRL
publication

Registration,
Initialization,
Certification,
Key pair recovery,
Key pair update
Revocation request

Cross-certification

Figure4.7 PKIX Architectural Model

61

PKIX Management Protocols

• Two alternative management protocols has been
defined between PKIX entities to support
the management functions

• Certificate Management Protocols (CMP)
– Within CMP, each of the mgmt functions is explicitly

identified by specific protocol exchanges

• Certificate Management Message over CMS (CMC)
– CMS : cryptographic message syntax

– Is built on earlier work and intended to leverage existing

implementations

– The functions do not all map into specific protocol

exchanges

Summary

62

• A survey of the most important authentication specifications

in current use

- Kerberos

. authentication protocol based on conventional

encryption that has received widespread support

- X.509

. Specifying an authentication algorithm and define a

certificate facility

. Enables users to obtain certificates of the public

keys so that a community of users can have confidence

in the validity of the public keys

